New formulations of the Hop-Constrained Minimum Spanning Tree problem via Miller-Tucker-Zemlin constraints

نویسندگان

  • Ibrahim Akgün
  • Barbaros Ç. Tansel
چکیده

0377-2217/$ see front matter 2011 Elsevier B.V. A doi:10.1016/j.ejor.2011.01.051 ⇑ Corresponding author. Tel.: +90 312 29

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New 0–1 ILP Approach for the Bounded Diameter Minimum Spanning Tree Problem

The bounded diameter minimum spanning tree (BDMST) problem is NP-hard and appears e.g. in communication network design when considering certain quality of service requirements. Prior exact approaches for the BDMST problem mostly rely on network flow-based mixed integer linear programming and Miller-Tucker-Zemlin-based formulations. This article presents a new, compact 0–1 integer linear program...

متن کامل

Modeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs

The Hop-Constrained Minimum Spanning Tree Problem (HMSTP) is a NP-hard problem arising in the design of centralized telecommunication networks with quality of service constraints. We show that the HMSTP is equivalent to a Steiner Tree Problem (STP) in an adequate layered graph. We prove that the directed cut formulation for the STP defined in the layered graph, dominates (in terms of the linear...

متن کامل

Layered graph models and exact algorithms for the generalized hop-constrained minimum spanning tree problem

This article studies the generalized hop-constrained minimum spanning tree problem (GHMSTP) which has applications in backbone network design subject to quality-of-service constraints that restrict the maximum number of intermediate routers along each communication path. Different possibilities to model the GHMSTP as an integer linear program and strengthening valid inequalities are studied. Th...

متن کامل

Integer Programming Formulations for the k-Cardinality Tree Problem

In this paper, we present two Integer Programming formulations for the k-Cardinality Tree Problem. The first is a multiflow formulation while the second uses a lifting of the Miller-Tucker-Zemlin constraints. Based on our computational experience, we suggest a two-phase exact solution approach that combines two different solution techniques, each one exploring one of the proposed formulations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 212  شماره 

صفحات  -

تاریخ انتشار 2011